Hiding secrets in plain sight

A C++20 library for obfuscating secrets at compile time

February 10, 2026

Sebastien Andrivet <sebastien@andrivet.com >

Contents

1]
2 |

3|

Introduction 4
Obfuscationo 5
2.1 | Types of ObfuSCALOTS ...\ .ovvt et 5
Design and Implementation i 7
3.1 | Generation of random numbers at compile time 7
3.2 | ODBUSCAION .« v ettt e e e e e e e e 8
3.3 | Obfuscation of SETINGSvirree et 14
3.4 | Obfuscation of data e e 17
3.5 | Obfuscation of function callsouoeene e 19
3.5.1 | Finite State Machine (FSM)uuuuuriniiiiiiiiiieianns 21
3.6 | Encryption of data with AES (Experimental) 25
3.6.1 | AES (Advanced Encryption Standard) 25
3.6.2 | AES in CTR mOdevnve e e 34
3.6.3 | Encryption of strings with AES ..., 36
3.6.4 | Limitationsoeen et 38
3.7 | Reverse engineeringooeiiii i 39
CONCIUSION .« .ottt e e e et e e e e e e e e e 46
ADDPENAIX . .o 47
5.1 | InStallationoeeen e 47
5.1.1 | Manual downloadoenon e 47
5.1.2 | Install & Use via find packageoeueuneuneuennennnn.. 47
5.1.3 | Add as a Git Submodule / Subdirectoryl 48
5.1.4 | Use with FEtChCONtENtouou et e 48
5.2 Source COde ... e 49
5.3 | USaGe oot 49
5.3.1 | Obfuscation of StTingsccoiuiiiiiiiiiiiiiaiiaaiin, 49
5.3.2 | Obfuscation of dataouuuoei e 50
5.3.3 | Encryption of strings with AES ..., 50
5.4 | Compilers SUPPOTttt 50
5.5 | A brief introduction to metaprogramming, 51
5.5.1 | Templatesoooun e 51
5.5.2 | Variadic templateso 52
5.5.3 | Constexpr and constevaloouoiuiiiiiiiii . 53

5.5.4 | Metaprogrammingueeiiiee i 53

5.6 | HASEOTY ..ottt

5.7 | Copyright and License of the Librarycoiiiiiiiiiiiii..
Bibliography

1| Introduction

Twelve years ago [1], I created and released an obfuscation library based on C++11
[2] (and updated later to C++14 and C++17) called ADVobfuscator. The goal
was to provide a simple-to-use way to hide secrets in C++ code, such as API keys,
passwords, or any sensitive data. In particular, I used it in a commercial product called
ADVdetector, a library for detecting jailbroken iOS devices. The obfuscation techniques
used in ADVobfuscator were based on template metaprogramming, which allowed it to
generate complex code at compile time, making it harder to reverse engineer.

To my surprise, ADVobfuscator got some attention and was used in several programs,
including some viruses [3], [4]. Some people even created tools to deobfuscate the code
generated by ADVobfuscator [5], [6]. The library was far from perfect. Due to limitations
in the C++ language, it used some macros, which made the code less readable. The
obfuscation algorithm was simple (XOR-based) and could be broken by a determined
reverse engineer or even some automated tools.

With the availability of C+-+20 [7], I decided to create a new version of the library,
which takes advantage of the new features of C++20 to provide better obfuscation and
a more user-friendly, natural interface no more macro-based. My goal is to make it
harder to reverse engineer the code, while still being easy to use for developers. Another
motivation for creating a new version of the library is to experiment with AES and
determine if it can be used effectively at compile time to obfuscate secrets such as TLS
certificates.

In this paper, I will present the design and implementation of the new version of a
library and some of my experiments with compile-time AES.

2 | Obfuscation

Obfuscation is “the deliberate act of creating [..] code that is difficult for humans to
understand” [8]. Obfuscated code has the same or almost the same semantics as the
original and obfuscation is transparent to the system executing the application and to
the users of this application.

Barak and al [9] introduced in 2001 a more formal and theoretical study of obfus-
cation: an obfuscator @ is a function that takes as input a program & and outputs
another program O(2) satisfying the following two conditions:

o (functionality) O(2) computes the same function as 2.
o (“virtual black box” property) “Anything that can be efficiently computed from
O(P) can be efficiently computed given oracle access to P.”

Their main result is that general obfuscation is impossible even under weak formal-
ization of the above conditions. This result puts limits on what we can expect from an
obfuscator. In the remaining of this discussion, we will focus on obfuscators not as a
universal solution but as a way to slow down reverse engineering of software. We will
also focus on areas typically exploited by attackers. In other terms, we will follow a
pragmatic approach, not a theoretical one. For a more theoretical presentation, see for
example the thesis of Jan Cappaert [10].

2.1| Types of obfuscators

It is possible to classify obfuscators in several ways depending on assumptions and
intents. A possible classification is the following [11]:

e Source code obfuscators: transformation of the source code of the application before
compilation.

e Binary code obfuscators: transformation of the binary code of the application after
compilation.

This classification mimics the traditional phases of compilation: front-end (dependent
on the source language) and back-end (independent on the source language, dependent
on the target machine) [12].

Source code obfuscators can be further refined:

e Direct source code obfuscation: manual transformation of the source code by a
programmer to make it difficult to follow and understand (including for other devel-
opers or for himself).

e Pre-processing obfuscators: automatic transformation of source code into modified
source code before compilation.

o Abstract syntax tree (AST) or Intermediate representation (IR) obfuscators: com-
pilers operate in phases. Some are generating an intermediate representation, a kind

of assembly language or virtual machine bytecode (as it is the case for LLVM). This
class of obfuscators transforms this intermediate language.

e Bytecode obfuscators: transformation of bytecode generated by the compiler
(Java, .NET languages, etc.) It is a special case and share similarities with Abstract
syntax tree obfuscators. This class of obfuscators is in fact located between source
code and binary code obfuscators. We classify it in source code obfuscators because
it is dependent on the languages and not on the target machine.

Under some circumstances, software or a portion of it has to be released in source
code. A typical example is JavaScript embedded in web pages. In this case, only some
source code obfuscators are applicable.

Depending on the language, it is possible to further refine this classification or to add
new classes of obfuscators. It is the case for the C++ language. Beyond the classical
syntax and lexical analysis, C+4 compilers incorporate other compilation phases: the
pre-processor is well-known as it is directly inherited (almost without modifications)
from the C language. But there is another one, specific to C++: templates instantiation
and compile-time specifiers. It is this mechanism that will be used for the obfuscator
described in this document. These techniques are described in an Appendix of this
document.

3 | Design and Implementation

The objectives are:

e Use a simple and natural syntax for obfuscating secrets in C++ code, without using
macros. Something like:

auto secret = "This is a secret" obf;

o Provide better obfuscation techniques (compared to the previous version of the
library) to make it harder to reverse engineer the code.

e Do not rely on undefined behavior of the C++ language.

3.1 | Generation of random numbers at compile time

File random.h.

There is no function in C++ to generate random numbers at compile time. However,
we can use the TIME macro, which expands to a string literal representing the time
of compilation in the format “HH:MM:SS”. We can parse this string to extract the
hours, minutes, and seconds, and use them to generate random numbers:

/// Use current (compile time) as a seed

static constexpr char time[] = TIME_ ; // TIME has the following
format: hh:mm:ss in 24-hour time

/// Convert a digit into the corresponding number
constexpr int digit to int(char c) { return c - '0'; }

/// Convert time string (hh:mm:ss) into a number
static constexpr unsigned seed =

digit to int(time[7]) +

digit to int(time[6]) * 10 +

digit to int(time[4]) * 60 +

digit to int(time[3]) * 600 +

digit to int(time[1l]) * 3600 +

digit to int(time[0]) * 36000;

This number (seed) is then used to generate random numbers with a Lehmer random
number generator [13]. It is certainly possible to use a better algorithm but it is simple
to implement, well known and considered a minimal standard [14].

/// Generate a (pseudo) random number.

/// \tparam T Type of the number to generate (std::size t by default).

/// \param count The count for the generation of random numbers.

/// \param max The maximum value of the number generated (excluded).
/// \return A number generated randomly.

/// \remarks Inspired by 1988, Stephen Park and Keith Miller

/// "Random Number Generators: Good Ones Are Hard To Find", considered
as "minimal standard"

/// Park-Miller 31 bit pseudo-random number generator, implemented with
G. Carta's optimisation:

/// with 32-bit math and without division

template<typename T = std::size t>

consteval T generate random(std::size t count, T max) {
const uint32 t a = 16807; // 175

const uint32 t m = 2147483647; // 2731 - 1

auto s = seed;

while(count-- > 0) {
uint32 t lo = a * (s & OxFFFF); // Multiply lower 16 bits by 16807
uint32 t hi = a * (s >> 16); // Multiply higher 16 bits by 16807

uint32 t 102 = lo + ((hi & Ox7FFF) << 16); // Combine lower 15 bits
of hi with lo's upper bits

uint32 t 1o3 = 102 + hi;
s =1o3>m?7? 1o3 - m : lo3;

// Note: A bias is introduced by the modulo operation.

// However, I do believe it is negligible in this case (M is far lower
than 2731 - 1)

return static cast<T>(s % static cast<uint32 t>(max));

3.2 | Obfuscation

File obf.h

The previous version of the library used one of a set of obfuscation algorithms (XOR,
XOR with an incrementing key, shifting). The key and the choice of algorithm were
random. Since there are only 3 algorithms and only 255 possible keys, it was possible
to break the obfuscation with a brute-force attack. In the new version of the library,
we will use a combination of two sets of algorithms:

o a set of data algorithms (caesar, XOR, rotation of bits, substitution) used to
obfuscate a byte,

o aset of key algorithms (increment, inversion, substitution of bits, swapping high and
low nibbles) used to compute the next value of the key to be used with the data
algorithm.

/// Algorithms to encode data

enum class DataAlgorithm {
IDENTITY, ///< Identity function, i.e. no change.

CAESAR, ///< Caesar algorithm, key is the displacement.
XOR, ///< XOR with the key.
ROTATE, ///< Bits rotation, key is the displacement.

SUBSTITUTE, ///< Substitute bits, key % 8 is the displacement.
NB_VALUES ///< Number of values in this enum.

s

/// Algorithms to encode a key from a previous one
enum class KeyAlgorithm {
IDENTITY, ///< Identity function, i.e. no change.
INCREMENT, ///< Key is incremented at each step.

INVERT, ///< Key is inverted at each step.

SUBSTITUTE, ///< Substitute bits (0 becomes 7, 7 becomes 0, ...) at each
step.

SWAP, ///< Swap high and low nibbles at each step.

NB VALUES ///< Number of values in this enum.

}

/// Parameters of an obfuscation algorithm.
struct Parameters {
std::uint8 t key = 0; ///< Key to be used.

KeyAlgorithm key algo = KeyAlgorithm::IDENTITY; ///< Algorithm to
compute the next key.

DataAlgorithm data algo = DataAlgorithm::IDENTITY; ///< Algorithm to
encode data.

};

The combination of these two sets of algorithms allows to create a much larger number
of obfuscation algorithms, making it harder to break the obfuscation with a brute-force
attack. Of course, this is not a perfect solution. We are dealing with obfuscation, in
order to slow down reverse engineering not to prevent it. A combination of these two
sets of algorithms is called an Obfuscation:

/// An obfuscation algorithm

struct Obfuscation {

/// Construct an obfuscation with identity algorithms.
consteval Obfuscation() = default;

/// Construct an obfuscation with on the fly algorithms.
/// \param counter Randomization counter.
consteval explicit Obfuscation(std::size t counter) noexcept
: parameters {
.key = generate random not O<std::uint8 t>(counter, Ox7F),

.key algo = generate random(counter + 2, KeyAlgorithm::NB VALUES), //
Identity is acceptable here

.data_algo = generate random not O(counter + 1,
DataAlgorithm: :NB VALUES)

P A

/// Construct an obfuscation with explicit algorithms.
/// \param params Parameters for the obfuscation (key and algorithms).

consteval explicit Obfuscation(const Parameters ¶ms) noexcept
parameters {params} {}

/// Parameters for the obfuscation (key and algorithms).
Parameters parameters ;

b

The encoding and decoding are trivial:

/// Encode a byte. G C++
/// \param key Key to be used for the encoding.

/// \return The encoded byte.

[[nodiscard]] consteval std::uint8 t encode(std::uint8 t c, std::uint8 t
key) const {

switch(parameters .data algo) {

using enum DataAlgorithm;

case IDENTITY: break;

case CAESAR: return details::caesar(c, key);

case XOR: return details::x0r(c, key);

case ROTATE: return details::rotate(c, key);

case SUBSTITUTE: return details::substitute(c, key);

case NB VALUES: throw std::exception(); // Invalid data encoding
}

return c;

10

/// Decode a byte.
/// \param key Key to be used for the decoding.
/// \return The decoded byte.

[[nodiscard]] constexpr std::uint8 t decode(std::uint8 t c, std::uint8 t
key) const {

switch(parameters .data algo) {

using enum DataAlgorithm;

case IDENTITY: break;

case CAESAR: return details::caesar inverted(c, key);

case XOR: return static cast<std::uint8 t>(c ~ key);

case ROTATE: return details::rotate inverted(c, key);

case SUBSTITUTE: return details::substitute(c, key);

case NB_VALUES: throw std::exception(); // Invalid data encoding
}
return c;

}

Each algorithm is implemented by a method. For example, the substitute algorithm
is implemented as follows:

/// Substitute bits in a byte. @ C++
/// \param b Input byte.
/// \param d Number of bits for the substitution.

/// \remark If d = 7, bits 0 and 7 are exchanged, bits 1 and 6 are
exchanged, etc.

/// If d = 6, bits 0 and 6 are exchanged, bits 1 and 5 are exchanged,
etc.

/// \result The result of the substitution.
constexpr uint8 t substitute(uint8 t b, uint8 t d) {
d %= 8;
uint8 t result = 0;
for(uint8 t i = 0; 1 < 8; ++1i) {
auto bit = (b >> i) & 0Ox01;
result |[=bit << (i <=d ?d -1 :8 -1+ d);
}
return result;

}

Given a key, we can compute the next key with the key algorithm:

11

/// Compute the next key from the current one. G C++
/// \param key The current key.
/// \return The new key computed from the given key.
[[nodiscard]] constexpr std::uint8 t next key(std::uint8 t key) const {
switch(parameters .key algo) {
using enum KeyAlgorithm;
case IDENTITY: break; // This is acceptable here
case INCREMENT: return static cast<std::uint8 t>((key + 1) % 256);
case INVERT: return details::x0r(key, OxFF);
case SUBSTITUTE: return details::substitute(key, 7);
case SWAP: return details::swap(key);
default: throw std::exception(); // Invalid key encoding;
}
return key;

}

The method next_key is used to compute the next key to be used for encoding/
decoding the next byte. The first key is the one defined in the parameters of the
obfuscation:

/// Encode a range of data. G C++

/// \param begin pos Relative position of the beginning of the range
from the whole data.

/// \param begin Pointer to the first byte to encode.
/// \param end Pointer past the last byte to encode.
template<typename It>

consteval void encode(std::size t begin pos, It begin, It end) const
noexcept {

auto key = parameters_ .key;
while(begin pos-- > 0) key = next key(key);

for(auto current = begin; current < end; key = next key(key), +
+current)

*current = encode(*current, key);

/// Decode a range of data.

/// \param begin pos Relative position of the beginning of the range
from the whole data.

/// \param begin Pointer to the first byte to decode.
/// \param end Pointer past the last byte to decode.

template<typename It>

12

constexpr void decode(std::size t begin pos, It begin, It end) const
noexcept {

auto key = parameters_ .key;
while(begin pos-- > 0) key = next key(key);

for(auto current = begin; current < end; key = next key(key), +
+current)

*current = decode(*current, key);

}

In order to make the reverse engineering harder, the number of obfuscation algorithms
are not always the same. They are randomly chosen between 2 and 4:

/// Minimal number of algorithms G C++
static const std::size t MIN NB ALGORITHMS = 2;

/// Maximal number of algorithms

static const std::size t MAX NB ALGORITHMS = 4;

/// A set of obfuscations
struct Obfuscations {
/// Construct a set of random generated obfuscations.
/// \param counter Randomization counter.
consteval explicit Obfuscations(std::size t counter) noexcept
: algos {details::make algorithms(
counter,

generate random(counter, details::MIN NB ALGORITHMS,
details::MAX NB_ALGORITHMS),

std::make index sequence<details::MAX NB ALGORITHMS>{}
)} {}

/// Construct a set of obfuscations with explicit parameters.

/// \param params Parameters for the obfuscation (key and algorithms).
consteval explicit Obfuscations(const Parameters ¶ms) noexcept

: algos {details::make algorithm(params)} {}

/// Construct a set of obfuscations with explicit parameters.

/// \param params Array of parameters for the obfuscation (key and
algorithms).

template<std::size t A>
consteval explicit Obfuscations(const Parameters (¶ms)[A]) noexcept
: algos {details::make algorithms<A>(

13

params,
std::make index sequence<details::MAX NB ALGORITHMS>{})} {}

/// A set of obfuscations
std::array<Obfuscation, details::MAX NB_ALGORITHMS> algos ;
b

Encoding and decoding is performed with one algorithm after the other:

/// Encode a range of data.

/// \param begin pos Relative position of the beginning of the range
from the whole data.

/// \param begin Pointer to the first byte to encode.
/// \param end Pointer past the last byte to encode.
template<typename It>
consteval void encode(std::size t begin pos, It begin, It end) const {
for(std::size t i = 0; 1 < details::MAX NB_ALGORITHMS; ++1i)
algos [i].encode(begin pos, begin, end);

/// Decode a range of data.

/// \param begin pos Relative position of the beginning of the range
from the whole data.

/// \param begin Pointer to the first byte to decode.
/// \param end Pointer past the last byte to decode.
template<typename It>

constexpr void decode(std::size t begin pos, It begin, It end) const
noexcept {

for(std::size t i = 0; i1 < details::MAX NB ALGORITHMS; ++i)

algos [details::MAX NB ALGORITHMS - i - 1].decode(begin pos, begin,
end) ;

3.3 | Obfuscation of Strings

File string.h.

String literals are one of the most important sources of information for an attacker
when reverse engineering binaries. They are sometimes even more important than
debugging information (when they are available). Thanks to those literals, the attacker
will be able to quickly find interesting portions of code instead of trying to take a costly

14

top-down approach (reverse engineering from the entry point of the binary). Binaries
often contains several different kind of string literals like:

e error messages
o log information (even if logs are not activated)
e name of functions or of classes

e URLs

e etc.

It is essential to obfuscate these literals in order to slow down reverse engineering.
Some programmers obfuscate these literals manually (direct source code obfuscation)
and maintain (manually) a list of correspondence between obfuscated strings and
original ones. This kind of solution is difficult (if ever possible) to maintain. Others use
a pre-processor to automate these modifications. But again, it is difficult to maintain
and it makes debugging more difficult for the developer.

Our goal is to obfuscate string literals with the following constraints:

e use a developer-friendly syntax. In particular, the original string literal has to be
present in source code.

o use only C++ without any external tool.

o obfuscate literals at compile time. De-obfuscation can be performed at runtime.

o the cost of obfuscation / deobfuscation has to be minimal.

o the original string must not be present in the binary in release builds. It is acceptable
if it is present in debug builds.

C++11 introduced user-defined literals (UDL) that allow to define custom suffixes
for literals. This is a perfect fit for our goal. C+420 further improved UDL with the
introduction of string literal operator template. With these two features, we can define
a UDL obf that obfuscates the string literal at compile time and deobfuscates it at
run-time when it is used. For example:

auto secret = "This is a secret" obf;

use secret(secret.decode());

We declare a string literal operator template obf:

template<ObfuscatedString str>

consteval auto operator "" obf() { return str; }

It is a consteval template UDL. It constructs (at compile-time) an instance of
ObfuscatedString. The constructor of ObfuscatedString accepts a string literal (more
precisely, a reference to a constant array of characters) and is also consteval:

/// An obfuscated string of characters.

/// \tparam N The number of bytes of the string (including the null
terminal byte).

15

template<std::size t N>
struct ObfuscatedString {
/// Construct an obfuscated string of characters.
/// \param str The array of characters (including the null terminal
byte).
consteval ObfuscatedString(char const (&str)[N]) noexcept
: algos_{generate sum(str)} {
encode(str);

Y

/// Encoded or decoded data.

std::array<char, N> data {};

/// Obfuscations used to encode the data.

Obfuscations algos_;

/// Is the data encoded (default) or decoded (i.e. used)?
bool obfuscated = true;

};

The count parameter of the obfuscation is computed as the sum of the characters
of the string, which means that the same string will always be obfuscated with the
same algorithms and keys. The obfuscation (encode) is performed in-place on the data
member of 0bfuscatedString:

/// Encode an array of characters.

/// \param str The string of characters to be encoded.
consteval void encode(char const (&str)[N]) noexcept {
std::array<std::uint8 t, N> buffer;
std::copy(str, str + N, buffer.begin());
algos .encode(0, buffer.begin(), buffer.end());
std::copy(buffer.begin(), buffer.end(), data .begin());
}

The deobfuscation is performed with an implicit cast operator to const char* that
decodes the data in-place and returns a pointer to the decoded string:

/// Implicit conversion to a pointer to (const) characters, like
++
a regular string.

operator const char* () noexcept {

16

constexpr auto random = call::generate random(LINE);

const ObfuscatedMethodCall call{random,
&0bfuscatedString: :decode _inplace};

call(random, this);
return data_.data();

}

This method uses an instance of ObfuscatedMethodCall to call decode inplace. This
class is used to obfuscate the call to the method, making it harder to reverse engineer
the code. This is explained later in the document. The method decode inplace decodes
the data in-place:

/// Decode an array of characters in-place.
void decode inplace() noexcept {

if(!'obfuscated) return;

std::array<std::uint8 t, N> buffer;

std::copy(data .begin(), data .end(), buffer.begin());
algos .decode(0, buffer.begin(), buffer.end());
std::copy(buffer.begin(), buffer.end(), data .begin());
obfuscated = false;

3.4 | Obfuscation of data

File bytes.h.

The obfuscation of block of data (bytes) is similar to the obfuscation of strings. The
difference is that the data is represented as a string of hexadecimal digits separated
by spaces. For example, the string “01 02 03 1F” represents the block of bytes {0x01,
0x02, 0x03, 0x1F}. The obfuscation is performed in-place on the data member of
ObfuscatedBytes.

We declare a user-defined literal (UDL) obf_bytes:

/// User-defined literal " obf bytes"

template<ObfuscatedBytes block>
consteval auto operator"" obf bytes() { return block; }

Like for ObfuscatedString, the constructor of ObfuscatedBytes accepts a string literal
(more precisely, a reference to a constant array of characters) and is also consteval:

/// A block of obfuscated bytes

template<std::size t N>
struct ObfuscatedBytes {

17

/// Construct a compile-time block of bytes from a string.

/// \lparam str Array of characters representing bytes to be encrypted
at compile-time.

/// The format of the string is: two hexadecimal digits seperated by
spaces.

/// Example: "01 02 03 1F".
/// \remark A set of obfuscation algorithms are generated on the fly.
consteval ObfuscatedBytes(const char (&str)[N])
: algos {generate sum(str)} {
parse(str);
encode();

/// Obfuscated or decoded data.

std::array<std::uint8 t, N / 3> data {};

/// Set of algorithms used for the obfuscation.

Obfuscations algos_;

/// Is the data obfuscated (default) or decoded (i.e. used)?
bool obfuscated = true;

s

The difference with ObfuscatedString is the calls to parse in the constructor. The
parse method parses the string literal to extract the bytes:

/// Parse a string representing bytes in hexadecimal separated by |
spaces.

consteval void parse(const char (&str)[N]) {
size t byte index = 0;
uint8 t high = 0;
bool half = false;

// For each character (except the terminal null byte)...
for(size t i =0; 1 <N - 1; ++1i) {

char ¢ = str[i];

// Is it a space?

if(c == "' ") continue;

// Get the corresponding nibble value

uint8 t value = hex char value(c);

// First nibble (half)?

if('half) {

18

high = value << 4;
half = true;

}

else {

// We have the two nibbles, store them
data [byte index++] = high | value;
half = false;

}

The deobfuscation is performed either with a subscript operator that decodes the
data in-place and returns the decoded byte, or with a call to decode that decodes the
whole data and returns it as an std::array<uint8 t, N>:

/// Direct access to a byte in the block.

/// \lparam pos Position of the byte in the block.

/// \return The decoded byte.

[[nodiscard]] constexpr std::uint8 t operator[](std::size t pos) const {
std::uint8 t b{data [posl};
algos .decode(pos, &b, &b + 1);
return b;

/// Decode (deobfuscate) the block of bytes.
/// \return The decoded bytes.

[[nodiscard]] constexpr std::array<std::uint8 t, N / 3> decode() const
noexcept {

std::array<uint8 t, N / 3> buffer{};

std::copy(data .begin(), data .end(), buffer.begin());
algos .decode(0, buffer.begin(), buffer.end());

return buffer;

3.5 | Obfuscation of function calls

File call.h.

A way to obfuscate a call to a function is to use a finite state machine (FSM). Instead
of simply jump directly to the callee, we instantiate a FSM that will execute some steps
before calling the callee. Such schema will slow down both static and dynamic analysis:

19

State2

T — | eventd | T
Statel |{ | State4

m‘ . eventd

‘ State3
) p)
Stateb }—)@

Figure 1 : Example of a finite state machine.

The ObfuscatedCall class is used to obfuscate a call to a function, making it harder

to reverse engineer the code:

template<typename F>

struct ObfuscatedCall {
consteval ObfuscatedCall(std::uint32 t recognize, F fn)
: fsm {recognize, fn} {

Fsm<F> fsm_;

s

It uses a finite state machine (FSM) to obfuscate the call. This is described later in
the document. The call operator is used to call (indirectly) the function:

template<typename... Args>

decltype(auto) operator()(std::uint32 t value, Args... args) const {

auto fn = fsm _.run(value);

if constexpr (std::is void v<decltype(std::invoke(fn, args...))>) {
std::invoke(fn, args...);
return;

}

else
return std::invoke(fn, args...);

20

We first execute the FSM (run) then we check if the function returns void. In this
case, we call the function and return (without returning a value). Otherwise, we call
the function and return its result.

We declare a similar class ObfuscatedMethodCall to obfuscate a call to a method of
a class:

template<typename F>

struct ObfuscatedMethodCall {
consteval ObfuscatedMethodCall(std::uint32 t recognize, F fn)
: fsm {recognize, fn} {

template<typename 0, typename... Args>
decltype(auto) operator()(std::uint32 t value, 0 o, Args... args) const
{
auto fn = fsm_.run(value);
if constexpr (std::is void v<decltype(std::invoke(fn, o, args...))>) {
std::invoke(fn, o, args...);
return;
}
else
return std::invoke(fn, args...);

Fsm<F> fsm_;

s

3.5.1 | Finite State Machine (FSM)

File: fsm.h.

The actual finite state machine (FSM) is generated at compile time from a random
number. This FSM is a recognizer for the binary digits of this random number. For
example, if the random number is 11 (which is 1011 in binary), the FSM will have 17
states: the initial state, a state for recognizing the first bit (1), a state for recognizing
the second bit (0), a state for recognizing the third bit (1) and a state for recognizing
the fourth bit (1). In addition, there will be 3 states that will loop forever when the
input bit is wrong. The FSM will transition from one state to another depending on the
value of the input (the value passed to the call operator). If the input value is correct,
the FSM will eventually reach a final state that will allow to call the callee. Otherwise,
it will be stuck in states in a loop and will not call the callee.

21

Figure 2 : FSM to recognize the binary digits of 11 (1011).

Note: Previous versions of the library relied on Boost Meta State Machine (MSM)
library to implement the FSM. This is no more the case in the new version of the
library. The FSM is implemented with C++20 features and is much simpler than the
one implemented with Boost MSM. This removes the dependency on Boost and makes
the code easier to understand and maintain.

We first declare some constants for the FSM like the number of bits (32), the number
of transitions per bit (8) and the total number of transitions (256):

constexpr size t NB BITS = 32; ///< Number of bits recognized.
constexpr size t TRANSITIONS PER BIT = 8; ///< Number of transitions per
bit.

constexpr size t MAX TRANSITIONS = NB BITS * TRANSITIONS PER BIT; ///<
Total number of transitions.

The FSM is represented as an array of transitions. Each transition is a structure that
contains the input bit (input), the source state (from), the destination state (to) and
the object to be returned when the FSM reaches the final state (o):

template<typename 0>

22

struct Transition {
bool input; ///< Input value (bit: 0 or 1).
int from; ///< From this state.
int to; ///< To this state.
0 o; ///< Object to return.
b

One of the states is designed as the activation state. When the FSM reaches this state,
it will call the callee and return its result. When the FSM is constructed, a random
number is generated for the activation state. The transitions are then generated:

/// A finite state machine that recognizes a number bit per bit, S C++
template<typename 0>
struct Fsm {

/// Construct a new finite state machine that recognizes a number and
stores an object.

/// \param recognize The number to be recognized by this finite state
machine.

/// \param o The object stored in one of the transition (the active
one).

consteval Fsm(std::uint32 t recognize, 0 o) {
// Get a random number for the activate transition of the recognizer.
// The activate transition is the transition that stores the object.

const std::uint32 t activate =
generate random not O<uint32 t>(recognize % 1000, NB BITS - 1);

auto bits = details::num bits(recognize);

// For each bit...
for(int 1 = 0; 1 < bits; ++i) {
// Get the bit's value
bool bit = (recognize >> (bits - 1 - i)) & 0x01;

// Transition to the next state of the recognizer and store (or not)
the object

add transition(bit, 4 * i, 4 * i + 4, 1 + 1 == activate ? o : 0{});
// Transition to states in an infinite loop
add transition(!'bit, 4 * i, 4 * i + 1, 0{});

add transition(@, 4 * i + 1, 4 * i + 2, 0{});
add transition(l, 4 * i + 1, 4 * i + 3, 0{});
add transition(®, 4 * i + 2, 4 * i + 3, 0{});
add transition(l, 4 * i + 2, 4 * i + 1, 0{});
add transition(0, 4 * i + 3, 4 * i + 1, 0{});
add transition(@, 4 * i + 3, 4 * i + 2, 0{});

23

};

Adding a transition is just adding an element to the array of transitions:

/// Add a transition to the finite state machine.

/// \param input Input value.
/// \param from From state.
/// \param to To state.

S C++

/// \param o Object to be stored in transition.

consteval void add transition(bool input, int from, int to, 0 o) {
if(nb_transition >= MAX TRANSITIONS) throw std::exception(); //

MAX_ TRANSITIONS is too small

transitions [nb transition ++] = {.input

to, .0 = 0};

}

= input, .from = from, .to =

Running the FSM is just following the transitions until we reach a final state (a state

with an object to return):

/// Run the finite state machine on a number.

/// \param value The value to recognize.

/// \remark The FSM will never return (infinite loop) if the number is

wrong.

/// This is by design to annoy reverse-engineering.
decltype(auto) run(std::uint32 t value) const {

auto bits = details::num bits(value);
0;

int state

// For each bit in reverse...

for(int 1 = bits - 1; 1 >=0; --1) {
// Get the value of the bit.
bool bit = (value >> i) & 1;
// Find the transition
auto &transition = find(state, bit);
// Update the state.
state = transition.to;

// Treat the active transition as a final state.
if(transition.o '= 0{}) return transition.o;

S C++

24

throw std::exception(); // Invalid FSM (i.e.bug);

3.6 | Encryption of data with AES (Experimental)

3.6.1| AES (Advanced Encryption Standard)

File: aes.h.

When I created this new version of the library, I was wondering if it would be possible
to use a strong encryption algorithm like AES to obfuscate data. The idea was to
encrypt the data at compile time with AES and decrypt it at runtime. In other terms,
is it possible to implement AES at compile time in C4++7? And the answer is yes with
some severe limitations (see later in this document).

Note: This implementation is directly inspired from the AES Proposal: Rijndael by
Joan Daemen and Vincent Rijmen.

First we define the length of the encryption key (i.e. we will use AES-128):

/// Length of the cipher key

static constexpr std::size t n key{128}; // 128-bit or 192-bit or 256-bit

Then we define some type aliases for the different elements of the AES algorithm:

using Byte = std::uint8 t;
using Block = std::array<Byte, 128 / 8>;

using Key = std::array<Byte, n_key / 8>;

using Nonce = std::array<Byte, 8>;

// A 32-bit word
using Word = std::array<Byte, 4>;
// An array of 4 columns, each column has 4 rows (s[column][row]).

using State = std::array<Word, 4>;

// Expanded key
using EKey = std::array<Word, 4 * (n rounds() + 1)>;

The consteval function n_rounds gives the number of rounds of AES depending on
the key length (chapter 4.1 of the AES proposal):

/// Number of rounds

25

consteval std::size t n rounds() {
static assert(n key == 128 || n_key == 192 || n_key == 256);
return n_key == 128 ? 10 : n_key == 192 ? 12 : 14;

}

We then declare the Rijndael S-Box and inverse S-Box as constexpr obfuscated arrays:

// Rijndael S-Box (obfuscated) G C++

static constexpr ObfuscatedBytes<l6 * 3> sbox[16] = {
"63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76" obf bytes,
"CA 82 C9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO0" obf bytes,
"B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15" obf bytes,
"04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75" obf bytes,
"09 83 2C 1A 1B 6E 5A A® 52 3B D6 B3 29 E3 2F 84" obf bytes,
"53 D1 00 ED 20 FC Bl 5B 6A CB BE 39 4A 4C 58 CF" obf bytes,
"DO EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8" obf bytes,
“51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2" obf bytes,
“CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73" obf bytes,
"60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB" obf bytes,
"EO 32 3A OA 49 06 24 5C C2 D3 AC 62 91 95 E4 79" obf bytes,
"E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08" obf bytes,
"BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A" obf bytes,
"70 3E B5 66 48 03 F6 OE 61 35 57 B9 86 C1 1D 9E" obf bytes,
"E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF" obf bytes,
"8C Al 89 0D BF E6 42 68 41 99 2D OF BO 54 BB 16" obf bytes};

// Rijndael Inverse S-Box (obfuscated)

static constexpr ObfuscatedBytes<16 * 3> inv_sbox[16] = {
"52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb" obf bytes,
"7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de €9 cb" obf bytes,
"54 7b 94 32 a6 c2 23 3d ee 4c 95 Ob 42 fa c3 4e" obf bytes,
"08 2e al 66 28 d9 24 b2 76 5b a2 49 6d 8b dl 25" obf bytes,
"72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92" obf bytes,
"6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84" obf bytes,
"90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06" obf bytes,
"d0 2c le 8f ca 3f Of 02 cl1 af bd 03 01 13 8a 6b" obf bytes,
"3a 91 11 41 4f 67 dc ea 97 f2 cf ce fO b4 e6 73" obf bytes,
"96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1lc 75 df 6e" obf bytes,
"47 f1 1a 71 1d 29 c5 89 6f b7 62 Oe aa 18 be 1b" obf bytes,
"fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4" obf bytes,
"1f dd a8 33 88 07 ¢7 31 bl 12 10 59 27 80 ec 5f" obf bytes,

26

"60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef" obf bytes,
"ad e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61" obf bytes,
"17 2b 04 7e ba 77 d6 26 el 69 14 63 55 21 Oc 7d" obf bytes};

// Rijndael round constants (obfuscated)
static constexpr auto rcon = "01 02 04 08 10 20 40 80 1b 36" obf bytes;

Note: These data are obfuscated. Otherwise, they will be present in the binary in
clear and an attacker will be able to easily detect them and infer the algorithm used.

We then need to multiply in the Galois field GF(2®). This is done with the following
function gmul (chapter 2.2.1 of the AES proposal):

/// Multiplication in GF(278) of two bytes.
/// \param vO First argument

/// \param v1 Second argument
/// \return Result of the multiplication of vO and vl in GF(2"8)
/// \remark https://en.wikipedia.org/wiki/Rijndael MixColumns
[[nodiscard]] constexpr Byte gmul(Byte v@, Byte vl) {
Byte product = 0; // Initial product value
// For each bit...
for(std::size t i = 0; 1 < 8; ++1i) {
// If least significant bit is set, add (xor) vO to product
if(vl & 1) product "= vO;
// Set high bit to the x*7 term of vO
const bool high bit = v0 & 0x80;
// Shift vO to the left to multiply it by x (v0 = vO * x)
vO <<= 1;
// Turn x*8 into X™4+x"3+x+1
if(high bit) vO "= 0x1B;
// Right shift vl
vl >>= 1;
}
return product;

}

Note: Here we are not using consteval because this function is called both at compile
time (for the encyption) and at runtime (for the decryption). The function is constexpr
so it can be evaluated at compile time when it is called with constant arguments and
at runtime when it is called with non-constant arguments.

The addition in GF(28) is just the XOR of the two bytes and is defined by the
operator ~ for two Word or a Word and a Byte:

27

/// Addition (XOR) in GF(278) of two words. G C++
/// \param wO The left operand.
/// \param wl The right operand.
/// \return The result of the addition in GF(278) of each byte.
[[nodiscard]] constexpr Word operator™(const Word &w0O, const Word &wl) {
return Word{
static cast<Byte>(w@[0] ™~ wl[0O]),
static cast<Byte>(wO[1] ™~ wl[1l]),
static cast<Byte>(wO[2] ™ wl[2]),
static cast<Byte>(wO[3] ~ wl[3])
b

/// Addition (XOR) in GF(278) of a word and a byte.
/// \param w0 The left operand.
/// \param b The right operand.

/// \return The result of the addition in in GF(278) of each byte of the
left operand with the right operand.

[[nodiscard]] constexpr Word operator™(const Word &w0O, Byte b) {
return Word{
static cast<Byte>(wO[O] ™ b),
static cast<Byte>(w0O[1] ~ b),
static cast<Byte>(w@[2] ™ b),
static cast<Byte>(wO[3] ~ b)
b
}

We then define basic operations of AES like SubWord, SubBytes transformations and
their inverse (chapter 4.2.1 of the AES proposal):

/// SubWord Transformation - non-linear byte substitution using ‘
Sbox_

/// \param word Word to transform.

/// \return Transformed Word.

[[nodiscard]] constexpr Word sub word(const Word &word) {

return Word{

sbox[high(word[0])][low(word[0])],
sbox[high(word[1])][low(word[1])],
sbox[high(word[2])]1[low(word[2])],
sbox[high(word[3])][low(word[3])]

};

28

/// SubBytes Transformation - non-linear byte substitution using sbox.
/// \param state State to transform.
/// \return Transformed state.
[[nodiscard]] constexpr State sub bytes(const State &state) {
return State{

sub word(state[0]),

sub word(state[1]),

sub word(state[2]),

sub word(state[3])};

/// InvSubWord Transformation -Inverse of SubWord.
/// \param word Word to transform.
/// \return Transformed Word.
[[nodiscard]] constexpr Word inv sub word(const Word &word) {
return Word{
inv_sbox[high(word[0])][low(word[0])],
inv_sbox[high(word[1])][low(word[1])],
inv_sbox[high(word[2])]1[low(word[2])1,
inv_sbox[high(word[3]1)]1[low(word[3])]
b

/// InvSubBytes Transformation - Inverse of SubBytes.
/// \param state State to transform.
/// \return Transformed state.
[[nodiscard]] constexpr State inv sub bytes(const State &state) {
return State{
inv_sub word(state[0]),
inv_sub word(state[1]),
inv_sub word(state[2]),
inv sub word(state[3])};

}

The next transformations are ShiftRows and its inverse (chapter 4.2.2 of the AES
proposal):

/// ShiftRows Transformation - bytes in the last three rows are
cyclically shifted.

29

/// \param state State to transform.
/// \return Transformed state.
/// \remark Section 5.1.2
[[nodiscard]] constexpr State shift rows(const State &state) {
return State{
Word{state[0][0], state[1][1], state[2][2], state[3]1[31}, // c0O
Word{state[1][0], state[2][1], state[3][2], state[0][3]}, // cl
Word{state[2][0], state[3][1], state[0][2], state[1l]1[3]}, // c2
Word{state[3][0], state[0][1], state[1l][2], state[2][3]1} // c3
b

/// InvShiftRows Transformation - Inverse of ShiftRows.
/// \param state State to transform.
/// \return Transformed state.
/// \remark Section 5.1.2
[[nodiscard]] constexpr State inv shift rows(const State &state) {
return State{
Word{state[0][0], state[3]1[1], state[2][2], state[1l][31}, // c0O
Word{state[1][0], state[0][1], state[3][2], state[2][3]}, // cl
Word{state[2][0], state[1][1], state[0®][2], state[3][3]1}, // c2
Word{state[3][0], state[2][1], state[1l][2], state[O][3]} // c3
b
}

The next transformations are MixColumns and its inverse (chapter 4.2.3 of the AES
proposal):

/// MixColumns Transformation - Multiply a column by a fixed ‘
polynomial.

/// \param c The column to transform.

/// \return The transformed column.

/// \remark Section 5.1.3

[[nodiscard]] constexpr Word mix column(const Word &c) {
// 4.2.3 - The MixColumn transformation

// c(x) =3 *x 3 +1*x™2+1%*x+ 2 modulo x4 + 1

const auto vO{gmul(c[O], Ox02) ~ gmul(c[1l], Ox03) ~ c[2] ~
cl31};
const auto v1{ cl[o] ~ gmul(c[1l], Ox02) ~ gmul(c[2], Ox03) *
cl31};
const auto v2{ cl[o] ~ c[1] ~ gmul(c[2], Ox02) ~

gmul(c[3]1, 0x03)};

30

const auto v3{gmul(c[0®], 0x03) " c[1] ~ cl2] ~
gmul(c[3]1, 0x02)};

return Word{
static cast<Byte>(v0),
static cast<Byte>(vl),
static cast<Byte>(v2),
static cast<Byte>(v3)};

/// InvMixColumns Transformation - Inverse of MixColumns.
/// \param c The column to transform.
/// \return The transformed column.
/// \remark Section 5.3.3
[[nodiscard]] constexpr Word inv mix column(const Word &c) {
// 4.2.3 - The MixColumn transformation
// c(x) =3 *x 3 +1*x™2+1%x+ 2 modulo x4 + 1

const auto vO{gmul(c[0], Ox0e) ~ gmul(c[1l], OxOb) ™~ gmul(c[2], Ox0d) ~
gmul(c[3]1, 0x09)};

const auto vl{gmul(c[0], 0x09) ~ gmul(c[1], Ox0e) ~ gmul(c[2], Ox0b) ~
gmul(c[3], 0x0d)};

const auto v2{gmul(c[0], 0x0d) ~ gmul(c[1], 06x09) ~ gmul(c[2], Ox0e) *
gmul(c[3]1, 0x0b)};

const auto v3{gmul(c[0], Ox0b) ~ gmul(c[1l], Ox0d) ~ gmul(c[2], Ox09)
gmul(c[3], 0x0e)};

return Word{

>

static cast<Byte>(v0),
static cast<Byte>(vl),
static cast<Byte>(v2),
static cast<Byte>(v3)};

}

We declare two helper functions that take a State as input and apply the mix column
or inv_mix_column transformation to each column of the state:

/// MixColumns Transformation - Multiply columns by a fixed ‘
polynomial.

/// \param state The state to transform.
/// \return The transformed state.
[[nodiscard]] constexpr State mix columns(const State &state) {

return State{mix column(state[@]), mix column(state[l]),
mix column(state[2]), mix column(state[3])};

31

/// InvMixColumns Transformation - Inverse of MixColumns.

/// \param state The state to transform.

/// \return The transformed state.

[[nodiscard]] constexpr State inv mix columns(const State &state) {

return State{inv mix column(state[0]), inv mix column(state[l]),
inv_mix column(state[2]), inv mix column(state[3])};

}

The next step is to implement the Round Key Addition (chapter 4.2.4 of the AES
proposal):

/// AddRoundKey Transformation - Add a Round Key to the State. G C++
/// \param state The current state.

/// \param ekey The round key.

/// \return The transformed state.

/// \remark Section 5.1.4

[[nodiscard]] constexpr State add round key(const State &state, const
EKey &ekey, std::size t round) {

State new state;
for(std::size t ¢ = 0; c < 4; ++cC)
for(std::size t r = 0; r < 4; ++r)

new state[c][r] state[c][r] ~ ekey[round * 4 + c][r];
return new state;

}

The next step is to implement the Key Expansion (chapter 4.3.1 of the AES proposal):

/// Key Expansion - Generate a key schedule. G C++
/// \param key The key to be expanded.
/// \return The expanded key.
/// \remark Section 5.2
[[nodiscard]] constexpr EKey key expansion(const Key &key) {
EKey ekey;
const auto nk = n_key / 32;

// First 4 words: copy of the encryption key

for(std::size t i = 0; 1 < nk; ++1i)
ekey[i] = {key[4 * i], key[4 * i + 1], key[4 * i + 2], key[4 * i +
31}

const auto n_r = n_rounds();

32

for(std::size t 1 =nk; i <4 * (n.r + 1); ++i) {
Word temp = ekey[i - 1];
if(i % nk == 0) {
temp = sub word(rot word(temp));
temp[0] "= rcon[i / nk - 1];
}
else if(nk > 6 and i % nk == 4)
temp = sub word(temp);
ekey[i] = ekey[i - 4] ©~ temp;

return ekey;

}

With all these transformations, we can implement the AES encryption (chapter 4.4
of the AES proposal):

/// Encrypt a block (128-bit) with a key. G C++
/// \param block Block to be encrypted with AES.

/// \param key AES key.

/// \return The encrypted block.

[[nodiscard]] constexpr Block encrypt(const Block &block, const Key &key)
{

using namespace details;

const auto ekey = key expansion(key);
State state = add round key(to state(block), ekey, 0);
for(std::size t round = 1; round < n rounds(); ++round)

state = add round key(mix columns(shift rows(sub bytes(state))), ekey,
round) ;

state = add round key(shift rows(sub bytes(state)), ekey, n rounds());
return to block(state);

}

The decryption is just the inverse of the encryption:

/// Decrypt (at runtime) a block of bytes with a key. @ C++
/// \param block bytes to be decrypted with AES.

/// \param key AES key.

/// \return The decrypted block.

[[nodiscard]] inline Block decrypt(const Block &block, const Key &key) {

using namespace details;

33

const auto ekey = key expansion(key);

State state = add round key(to state(block), ekey, n rounds());
for(std::size t round = n rounds() - 1; round >= 1; --round)

state =
inv_mix_columns(add round key(inv_sub bytes(inv_shift rows(state)),
ekey, round));
state = add round key(inv sub bytes(inv shift rows(state)), ekey, 0);
return to block(state);

3.6.2 | AES in CTR mode

To encrypt data larger than 128 bits, we can use AES in CTR (Counter) mode. The
idea is to encrypt a nonce with AES and XOR the result with the data to be encrypted.
The nonce is incremented for each block of data to be encrypted. This way, we can
encrypt data of any size with AES.

/// Encrypt in-place a string with a key using CTR (Counter) code
(using a nonce)

/// \param block bytes to be encrypted with AES. The number of bytes does
not need to be a multiple of 128.

/// \param key AES key.
/// \param nonce The random nonce to initialize the stream.
template<std::size t N>

[[nodiscard]] consteval std::array<Byte, N> encrypt ctr(const
std::array<Byte, N> &block, const Key &key, const Nonce &nonce) {

Block ctr{
nonce[0], nonce[l], nonce[2], nonce[3], nonce[4], nonce[5], nonce[6],
noncel[7],
0x00, 0x00, O0x00, O0x00, 0x00, 0x00, Ox00, 0x00

b

std::array<Byte, N> encrypted;
const auto nb_whole blocks = N / 16;
const auto nb_bytes last block = N % 16;
for(std::size t 1 = 0; i < nb _whole blocks; ++i) {
auto encrypted ctr = encrypt(ctr, key);
// Combine the cipher and the plain bytes
for(std::size t j = 0; j < 16; ++j) encrypted[i * 16 + j] = block[i *
16 + j]1 ~ encrypted ctr[j];
// Update the counter

34

for(std::size t j = 0; j < 8; ++j) ctr[8 + j] = static cast<Byte>((1i
>> j * 8) & Ox00000000000000FF) ;

const auto encrypted ctr = encrypt(ctr, key);

for(std::size t j = 0; j < nb_bytes last block; ++j)
encrypted[nb whole blocks * 16 + j] = block[nb whole blocks * 16 + j]
~ encrypted ctr[jl;

return encrypted;

}

The decryption is similar to the encryption but it is called at runtime:

/// Decrypt in-place a string with a key using CTR (Counter) code
(using a nonce)

/// \param data bytes to be decrypted with AES. The number of bytes does
not need to be a multiple of 128.

/// \param key AES key.
/// \param nonce The random nonce to initialize the stream.

inline void decrypt ctr(Byte *data, size t size, const Key &key, const
Nonce &nonce) A

Block ctr{

nonce[0], nonce[l], nonce[2], nonce[3], nonce[4], nonce[5],
nonce[6], nonce[7],

0x00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, O0x00
};

const auto nb_whole blocks = size / 16;
const auto nb _bytes last block = size % 16;
for(std::size t 1 = 0; i < nb whole blocks; ++i) {
auto encrypted ctr = encrypt(ctr, key);
// Combine the cipher and the plain bytes
for(std::size t j = 0; j < 16; ++j) data[i * 16 + j] = data[i * 16 +
jl ~ encrypted ctr[jl;
// Update the counter
for(std::size t j = 0; j < 8; ++j) ctr[8 + j] = static cast<Byte>((i
>> j * 8) & 0x00000000000000FF) ;

const auto encrypted ctr = encrypt(ctr, key);
for(std::size t j = 0; j < nb_bytes last block; ++j)

35

data[nb _whole blocks * 16 + j] = data[nb whole blocks * 16 + j] ©
encrypted ctr[jl;

3.6.3 | Encryption of strings with AES

File: aes string.h.

A key and a nonce are generated at compile time and used to encrypt the string with
AES in CTR mode in the constructor of the Aestring class:

/// A compile-time string encrypted with AES-CTR. G C++
template<std::size t N>
struct AesString {
/// Construct a compile-time string encrypted with AES-CTR.
/// \lparam str Array of characters to be encrypted at compile-time.
/// \remark A key and a nonce are generated on the fly.
consteval AesString(const char (&str)[N]) noexcept
: key {generate random block<l16>(generate sum(str, 0))},
nonce {generate random block<8>(generate sum(str, 16))} {
// Compile-time copy of the data
std::copy(str, str + N, data .begin());
// Compile-time encryption
auto encrypted = encrypt ctr(data , key , nonce);
// Compile-time copy of the encrypted data
std::copy(encrypted.begin(), encrypted.end(), data .begin());

/// Encrypted or decrypted data.

std::array<Byte, N> data {};

/// Is the data encrypted (default) or decrypted (i.e. used)?
bool encrypted = true;

/// The nonce used to chain blocks (CTR).

Nonce nonce {};

/// The key used to encrypt the data.

Key key {};

};

When the string is destroyed, the data are erased from memory:

36

/// Destruct the string by first erasing its content.
/// \remark The erasing may be omitted by the compiler.

constexpr ~AesString() noexcept { erase(); }

/// Erase the information stored by the string (data, key and nonce)
constexpr void erase() noexcept {

if (encrypted) return;

std::fill(data_.begin(), data_.end(), 0);

std::fill(key .begin(), key .end(), 0);

std::fill(nonce .begin(), nonce .end(), 0);

}

The remaining of the implementation is very similar to the implementation of
ObfuscatedString. The decryption is performed either by an implicit cast operator to
const char* that modifies the instance or by an explicit call to decrypt() that does not

modify the instance:

/// Implicit conversion to a pointer to (const) characters, like
++
a regular string.

operator const char *() noexcept {
constexpr auto random = call::generate random(LINE);
const ObfuscatedMethodCall call{random, &AesString::decrypt inplace};
call(random, this);
return reinterpret cast<const char *>(data .data());

/// Decrypt the encrypted string.

[[nodiscard]] constexpr std::string decrypt() const {
std::array<std::uint8 t, N> buffer;
std::copy(data .begin(), data_.end(), buffer.begin());
if(encrypted) decrypt ctr(buffer.begin(), N, key , nonce);
std::string str;
str.resize(N - 1);
std::copy(buffer.begin(), buffer.end() - 1, str.begin());

return str;

/// Run-time decryption
void decrypt inplace() noexcept {

37

if('encrypted) return;
decrypt ctr(reinterpret cast<Byte*>(data .data()), N, key , nonce);
encrypted = false;

}

We also define a user-defined literal to create an AesString from a string literal:

/// User-defined literal " aes"

template<AesString str>
consteval auto operator"" aes() { return str; }

This way, we can encrypt a string at compile time with AES-CTR like this:

void aes encryption strings() {

std::cout << "This is a string containing a secret that has to be hidden
with AES" aes << "\n";

3.6.4 | Limitations

Currently, only relatively small strings can be encrypted with AES-CTR with all
compilers. When using long strings, the compilation may fail with an obscure error
message such as (Clang):

error: no matching literal operator for call to 'operator"" aes'

with arguments of types 'const char *' and 'unsigned long', and no (# Shell
matching literal operator template

or (MSVC):

error C2672: 'andrivet::advobfuscator::operator "" aes': no
matching overloaded function found ‘s Shell

expression did not evaluate to a constant

The limit is around 104 bytes when compiling with Clang, 121 bytes with MSVC.
There is apparently no limit with GCC 15. It is able to deal with strings such as:

auto sl = R"(----- BEGIN CERTIFICATE-----

MIICUTCCATfugAwIBAgIBADANBgkghkiG9wOBAQQFADBXMQswCQYDVQQGEwIDT EL
MAKGA1UECBMCUE4xCzAJBgNVBACTAKNOMQswCQYDVQQKEwIPTjELMAKGALIUECXMC
VU4xFDASBgNVBAMTCOh1cmOuZyBZYW5nMB4XDTAIMDcXNTIXMTKkON1oXDTAIMDgx
NDIXMTKkON1lowVzELMAKGALUEBhMCQO4xCzAJBgNVBAgTA1BOMQswCQYDVQQHEwWID
TjELMAKGALUEChMCT04xCzAJBgNVBASTATVOMRQWEQYDVQQDEwWtIZXJIvbmcgWwFu
ZzBcMAOGCSqGSIb3DQEBAQUAA®SAMEGCQQCp5hnG70gBhtlynp0S21cBewKE/B7]
V14geyslnr26xZUsSVko36Znhia0/zbMOoRcKK9VEcgMtcLFuQTWD13RAgMBAAG]

38

gbEwgadwHQYDVROOBBYEFFXI70krXeQDxZgbaCQoR4jUDncEMH8GA1UdIwR4MHaA
FFXI70krXeQDxZgbaCQoR4jUDncEoVukWTBXMQswCQYDVQQGEwIDT jELMAKGA1UE
CBMCUE4xCzAJBgNVBACTAKNOMQswCQYDVQQKEwJPT j ELMAKGALUECXMCVU4xFDAS
BgNVBAMTCOh1cm9uZyBZYW5nggEAMAWGA1UdEWQFMAMBAT8wDQYJKoZIhvcNAQEE
BQADQQA/ugzBrjjK9jcWnDVfGHLk31icNRqOoV7R1i32z/+HQX67aRfgZu7KWdI+Ju
Wm7DCfrPNGVwWFWUQOmsPue9rzZBg0

My guess is that the limit is related to the maximum size of a template parameter
pack (the string literal is passed as a template parameter pack to the user-defined literal
operator) but I have not been able to find any documentation about this limit. As far
as I know, there is no requirement in the C++ standard about this limit and it is up
to the compiler to decide it. So it is not really a bug in Clang and MSVC but rather
a limitation of their implementation. I have not been able to find any workaround for
this issue.

3.7 | Reverse engineering

We will compare two similar programs, one with clear strings and one with obfuscated
strings, to see the difference in the binary and how it can be reverse engineered. The
first program is a simple CrackMe that asks the user for a password and checks if it is
correct.

#include <iostream>

int main() {
std::string guess;

std::cout << "Guess me if you can: ";

if(std::getline(std::cin, guess); guess == "Can you spot this secret
inside the binary?")

std::cout << "Congratulations\n";
else
std::cout << "Nope\n";

The second program is the same but with all the strings obfuscated with ADVODb-
fuscator:

#include <iostream>

#include <advobfuscator/string.h>

using namespace andrivet::advobfuscator;

39

int main() {
std::string guess;
std::cout << "Guess me if you can: " obf;

if(std::getline(std::cin, guess); guess == "Can you spot this secret
inside the binary?" obf.decode())

std::cout << "Congratulations\n"_ obf;
else
std::cout << "Nope\n" obf;

Important: Be sure to compile both programs in release mode with optimizations
enabled and without debug symbols. Otherwise, the strings may be present in clear
in the binary and the reverse engineering will be trivial. It is also better to strip the
binary to remove all the symbols that may help the reverse engineering. For example,
with CMake:

cmake -DCMAKE BUILD TYPE=Release -S . -B build (s Shell

cmake --build build
strip build/guessme

Using Binary Ninja, it is trivial to decompile the first program and see the string
“Can you spot this secret inside the binary?” in clear in the decompiled code:

604010e0 int32_t main(int32_t arge, char** argv, char** envp)

004010e0 {

00401000 class std::string __str;

ee4e1efe *(uint8_t*)((char*)&__str. + @) = @;
00401103 var_28;

00401103

00401108 M_string_leng’
08401111 std::__

60401128 class std: :ctypeschar>* rdi

ostream_insert<char: :cout, "Guess me if you can: ", @x15);
00401128 *(uint64_t*) (*(uint6d_t*)(std::cin - Ox18) + 0x404298) ;
00401128

00401133 if (!rdi)

00401133 {

004818b8 ow_bad_cast();

00401000 n

00401133

60401133

0040113d char __delim;

0040113d

0040113d if (!Irdi->_M_widen_ok

0040113d {

00401196 std: :ctype<char>::_M_widen_init(rdi);

004811a7 d = oxa;

004011af int64_t rax_4 = *(uint64_t*)(rdi->table_size + @x30);
004011af

004011b6 if (rax_4 != std::ctypeschar>::do_widen

004011bf __delim = rax_4(rdi, 6xa, Oxa, std::ctype<char>::do_widen);
0040113d }

0040113d else

0040113f __delim = rdi->_M_widen[@xa]

0040113F

0040114b std: :getline<char>(&std: :cin, & _str, __delim);

0040114b

00401156 if (__str._M_string_length == @x2b)

00401156 {

004011df if (mememp(__str._M_dataplus._M_p

004011df “Can you spot this secret inside the binary?", @x2b))
0040116b std tream_insert<char>(&std: :cout, "Nope\n", 5);
004011df else

0040118 std::__ostream_insert<char>(&std: :cout, "Congratulations\n", @x10);
00491156 }

00401156 else

0040116b std::__ostream_insert<char>(&std: :cout, "Nope\n", 5);
0040116b

00401170 char* _M_p = __str._M_dataplus._M_p;

00401170

00401178 if (_M_p != &var_28

00401183 operator delete(_M_p);

60401183

00401190 return @;

0040100

Figure 3 : Decompilation of the first program.

The string is in clear in the binary and it is easy to find it and see where it is used:

40

ELF~ Stings~

Q. Search strings

RGQP
wh*e/11b64/1d-Linu;

gmon_start__
_ITH_deregisterTHCloneTable
_ITH_registerTHCloneTable
_zd1Pvm
_ZNKSt5ctypeIcE8do_widenEc
_zst3cin
_zst7getlineIcStiichar_traitsIcESaIcEERSt13basic_istreanIT_TO_ES7_RNSt7__cxx1112basic_stringIS4_§5_T1_EES4_
_Z5t16__throw_bad_castv
_zst2140s_base_library_initv

personality_ve

_ZSt16__ostrean_insertIcSt11char_traitsIcEERSt13basic_ostreanIT_Te_ES6_PKS3_1
_ZNKSt5ctypeTcE13_M_widen_initEv
_zstacout
_Unwind_Resume

libc_start_nain

cxa_finalize
memcnp
libstde++.50.6
libgee_s.s0.1
libe.so.6
6cc_3.0
GLIBCXX 3.4

ASCIT
ASCIT me if you can
ASCIT Congratulations
ASCIT Nope
ASCIT Can you spot this secret inside the binary?
ASCIT 143"

06462145 ASCII PR

Figure 4 : Strings in the first program.

The decompilation of the second program is much more difficult to understand. The

strings are not present in clear in the binary, they are obfuscated:

ELF~ Strings~

) Search strings

Address ~ Type Length
08486367 ASCIT 4 bI|r

8496373 ASCIT 11b64/1d-1inux-x86-64.50.2
68408641 ASCII _

68488650 ASCIT erTHCloneTable
68488660 ASCII _ITH_registerTHCloneTable
08488686 ASCII _ZTVstgexception

08408697 AS TISt9exception

08408628 AS _zd1Pvm

004006b8 AS _ZNKStSctypeIcE8do_widenEe
004006ch g _zst3cin
_zSt7getlineTcSt11char_traitsIcESalcEERSt13basic_istreamIT_T6_ES7_RNSt7.
cxa_throw
_Z5t16__throw_bad_castv
_allocate_exception
_75t2110s_base_library_initv
gxx_personality_va
_Z5t16__ostrean_insertIcSt11char_traitsICEERSt13basic_ostreanTT_To_ES6_PKS3_1
_ZNKSt5ctypeICE13_M_widen_initEv
owm
_zStdcout
—ZNSt9exceptionD1Ev
_Unwind_Resune
strlen
libc_start_main

e
GLIBCXX_3.4.21
GLIBCXX_3.4.32
GLIBCXX_3.4.11

000000e6.100000% el
)DSpL.

MO 000-0HO\OMOPOOMO)

Outlined 9000=0100000 9, KOION 000-0H0
ASCIT)osef

ASCIT)08

ASCIT D$\E

ASCIIT

ASCIT

AsCII

i O

=—

T i p—
linux-x86.64 0x0 &

Figure 5 : Strings in the second program.

41

The start of the code is similar to the first program:

Figure 6 : Decompilation of the second program.

Then there is a big while loop that is not present in the first program. This loop is
generated by the finite state machine:

Figure 7 : Decompilation of the second program with the finite state machine.

42

The loops continue. At some point, the decoding of the string “Can you spot this
secret inside the binary?” is performed but it is not clear where:

Figure 8 : Decompilation of the second program with more loops.

The end of the function is more recognizable:

Figure 9 : Decompilation of the second program with the end of the function.

43

It is however far from trivial to understand the code and to find the string “Can you
spot this secret inside the binary?” in the decompiled code using static analysis. The
only thing that is not obfuscated is the length of the string.

In this part of the code, we can see this code:

00401c17 _ builtin memcpy(&var 98,
00401c17
"\x34\xb7\xe6\xb3\x27\xb0\x47\xba\xc6\xb0\x47\xb4\xf6\x37\x37\x05\x00",
00401c17 0x11);

00401clc s 1 = sub 4047a0(var_f0);

var_f0 is an alias to &var_98. The string “\x34\xb7..” is the obfuscated version of
the string “Congratulations\n” and sub_4047a0 is the function that decodes it.

The decompilation of this function is the following:

99

L O Mm o

Figure 10 : Decompilation of sub_ 4047a0.

The disassembly does not give much more information about the decoding process:

44

<260000001
6200000001

00000001

rsprex160

o0404840
60464

ropid
rax, quord
quord [rsp+ext
rax, quord 8 60000000
quord [rsp+ax1a4 ox660
rax, quord [rel data_. oopee

X164 {var_1eb4

rel data_a 0x5000000:
ox1
0x6000000:

quord [rel dat:
rsprex2ae

00404
6040487d

0x200000009.

q 2
rax, quord [rel

94
0048490¢ E rei 0xf20000000.
00484923 rax (exfoe000e
9ab

Figure 11 : Disassembly of sub_ 4047a0.

¥ m—
0x404720 8

45

4 | Conclusion

This new version of ADVObfuscator is much more powerful than the previous ones.
Its interface is more user-friendly and avoid using macros. The obfuscation is more
powerful and the reverse engineering is much more difficult. The implementation of
AES-CTR is a nice addition to the library and allows to encrypt larger strings with
a strong encryption algorithm. The main limitation of this implementation is that it
can only encrypt relatively small strings (around 100 bytes) due to limitations of some
compilers. As of today, only GCC is able to correctly compile the code.

It is maybe possible to modify the AES implementation to be compatible with more
compilers but it is probably not worth the effort. This is a gray area of C++ and
compilers do not help much to understand the limitations of their implementation. I
am also not convinced that, when compiled, strings encrypted with AES-CTR would be
more difficult to reverse engineer than strings only obfuscated. AES looks more secure
on the surface but at the end, the code has the decryption key. It is not provided by a
secure mean. It is thus probably much worth the effort to enhance the obfuscation and
in particular the obfuscation of function calls. As of today, the address of the function
is not obfuscated (only the call itself is) and thus the reverse engineering tools are able
to compute cross-references.

Another interesting direction to explore is to port (or rewrite) this library to the Rust
programming language. Rust has a powerful macro system that provides some metapro-
gramming capabilities and it is also a popular language for systems programming. It
would be interesting to see how the obfuscation techniques can be implemented in Rust
and how they compare to the C++ version from a reverse engineering point of view.

46

5| Appendix

5.1 | Installation

ADVobfuscator is a header-only C++ library that integrates cleanly with CMake.
There are several possibilities to install and use it:

e Manual download

o Install & use via find package

o Add as a Git submodule / subdirectory
e Use with FetchContent

5.1.1 | Manual download

If you don’t use CMake or prefer to copy files manually:

e Click the green Code button on GitHub, then click on Download ZIP or download only
the include/ folder

e Copy the include/advobfuscator/ directory into your own project’s include/ folder.

e Include it in your code:

#include "advobfuscator/obfuscate.h"

e Make sure your compiler includes the path:

g++ -Iinclude myapp.cpp (# Shell

e If you are using CMake, here is an example of CMakeLists.txt:

cmake minimum required(VERSION 3.14) A CMake

project(myproject LANGUAGES CXX)

set (CMAKE_CXX STANDARD 20)
set (CMAKE_CXX STANDARD REQUIRED ON)

add executable(myapp src/main.cpp)

Add the path to the manually downloaded headers
target include directories(myapp PRIVATE ${CMAKE SOURCE DIR}/include)

5.1.2 | Install & Use via find_package

e Clone and Install the Library

git clone https://github.com/yourusername/advobfuscator.git (s Shell

47

cd advobfuscator

cmake -B build -DCMAKE INSTALL PREFIX=/your/install/prefix
cmake --build build --target install

o Replace /your/install/prefix with the desired install location (e.g., /usr/local or
a custom path).

e Link from Your CMake Project

cmake minimum required(VERSION 3.14) A CMake

project(myproject)

Add path to CMAKE PREFIX PATH if not system-installed
1ist (APPEND CMAKE PREFIX PATH "/your/install/prefix")

find package(advobfuscator REQUIRED)

add executable(myapp main.cpp)
target link libraries(myapp PRIVATE advobfuscator::advobfuscator)
5.1.3 | Add as a Git Submodule / Subdirectory

e Add the Library to Your Project

git submodule add https://github.com/andrivet/advobfuscator.git

external/advobfuscator ‘s Shell

e Link from Your CMake Project

add subdirectory(external/advobfuscator) A CMake

add executable(myapp main.cpp)

target link libraries(myapp PRIVATE advobfuscator::advobfuscator)
5.1.4 | Use with FetchContent

o If you want CMake (3.14 or higher) to automatically fetch and integrate ADVOb-
fuscator:

include(FetchContent)

FetchContent Declare(
advobfuscator

GIT REPOSITORY https://github.com/andrivet/advobfuscator.git

48

GIT TAG v2.0 # Or use a branch or commit hash

FetchContent MakeAvailable(advobfuscator)

add executable(myapp main.cpp)
target link libraries(myapp PRIVATE advobfuscator::advobfuscator)

5.2 | Source Code

All the code of the library is available on GitHub: https://github.com/andrivet/
advobfuscator.

5.3 | Usage

5.3.1 | Obfuscation of strings

Strings can be obfuscated using ADVobfuscator UDL (user-defined literal) _obf:

#include <advobfuscator/string.h>

std::cout << "abc" obf << '\n';

The string is obfuscated at compile time. The UDL constructs (at compile-time)
an instance of ObfuscatedString. At run-time, there is an implicit cast operator to
const char* so the deobfuscated string can be converted. This code is thus (almost)
equivalent to:

std::cout << ObfuscatedString{"abc"}.decode() << '\n';

It is also possible to use std::format:
#include <advobfuscator/format.h>

std::cout << std::format("{}\n", "abc" obf);

Instances of obfuscated strings can be manipulated like any object. The implicit cast
operator to const char* does modify the instance however (to decode the string). If the
instance is immutable, you have to call explicitly decode() that returns a std::string
and does not modify the instance:

static constexpr auto s4 = "An immutable compile-time string" obf;
std::cout << s4.decode() << '\n';

49

https://github.com/andrivet/advobfuscator
https://github.com/andrivet/advobfuscator

5.3.2 | Obfuscation of data

Blocks of data (uint8 t) can be obfuscated at compile-time using obf bytes:

#include <advobfuscator/bytes.h>

static constexpr auto data = "01 02 04 08 10 20 40 80 1lb 36" obf bytes;

The format has to follow these rules:

o Each byte is represented by two hexadecimal digits.
e These hexadecimal digits can be in lower or upper case.
o Bytes have to be separated by space.

At compile-time, an instance of ObfuscatedBytes is created. This class provides a
subscript operator that decodes, at run-time, the obfuscated data:

auto d = data[0]; // d is an uin8 t
It is also possible to decode the whole data with decode():

auto decoded = data.decode(); // decoded is an std::array<uint8 t, N>
There is also a data() member function that decodes the data in-place:

auto data = "01 02 04 08 10 20 40 80 1b 36" obf_bytes;
auto decoded = data.data(); // decoded is an const std::uint8 t

5.3.3 | Encryption of strings with AES

In this version, it is also possible to encrypt the strings at compile-time using AES.
The usage is however limited because of limitation of compilers (compile-time AES is
quite complex for them). In practice, you can also encrypt strings that are not too long
with the aes UDL. The behavior is similar to obfuscated strings:

#include <advobfuscator/aes string.h>

std::cout << "This is a string containing a secret that has to be hidden
with AES" aes << "\n";

Note: The S-box and other well-known data used by AES are obfuscated.

5.4 | Compilers support

ADVobfuscator has been tested with:

50

Compiler Version | OS CPU Obfuscation | AES
Apple Clang 17.0.0 macOS 15 | AArch64 | YES limited
Clang 21.1.8 Debian 14 | x86_64 | YES limited
Clang 19.1.7 Debian 13 x86_64 | YES limited
Clang 18.1.8 Debian 13 | x86_64 | YES limited
Clang 17.0.6 Debian 13 | x86_64 | YES limited
GCC 15.1.0 macOS 15 | x86_64 | YES YES
GCC 14.2.0 macOS 15 | AArch64 | YES YES
GCC 14.2.0 Debian 13 x86_ 64 | YES YES
GCC 13.3.0 macOS 15 [AArch64 [NO NO
Visual Studio 2022 | 17.14.13 | Windows 11 | AArch64 | YES limited
Visual Studio 2026 | 18.0.339 | Windows 11 | AArch64 | YES limited

5.5 | A brief introduction to metaprogramming

5.5.1 | Templates

Originally, templates were designed to enable generic programming and provide type
safety. A classical example is the design of a class representing a stack of objects.
Without templates, the stack will contain a set of generic pointers without type infor-
mation (i.e. of void*). As a consequence, it is possible to mix incompatible types and it
is required to cast (explicitly or implicitly) pointers to appropriate types. The compiler
is not able to enforce consistency. This is delegated to the programmer. With templates,
the situation is different: it is possible to declare and use a stack of a given type and
the compiler will enforce it and produce a compilation error in case of a mismatch:

template<typename T> struct Stack
{

void push(T* object);

T* pop();
I

Stack<Singer> stack;
stack.push(new Apple()); // compilation error

Contrary to other languages like Java, such templates do retain the types of objects
they are manipulating. Each instance of a template generates code for the actual
types used. As a consequence, the compiler has more latitude to optimize generated
code by taking into account the exact context. Moreover, and thanks to a mechanism
called specialization, this kind of optimization is also accessible to the programmer.
For example, it is possible to declare a generic Vector template for objects and another

51

version specialized for boolean. The two templates share a common interface but can

use a completely different internal representation.

// Generic Vector for any type T
template<typename T>
struct Vector

{
void set(int position, const T& object);
const T& get(position);
/7 ...

I

// template specialization for boolean
template<>
struct Stack<bool>

{
void set(int position, bool b);
bool get(position);
/] ..

b

5.5.2 | Variadic templates

There are several situations where it is necessary to manipulate a list of types. It is the

case for example when defining a tuple, a list of values of various types. Until C++11, the

number of types (and thus of values) were arbitrarily limited by the implementation. It

is not the case anymore with the C++11 and later: they are able to manipulate a list of

types with variadic templates. For example, tuple can be defined by the following code:

template <typename... T>
class tuple {

public:
tuple();
explicit tuple(const T&... args);
/] ...

b

A tuple is created and used this way:

tuple<int, string, double> values{123, “test”, 3.14};

cout << get<0>(values);

Or, by using make tuple helper:

52

auto values = make tuple(123, "test", 3.14);

cout << get<0>(values);

It is important to note that make tuple and get are evaluated at compile time, not
at runtime. They are compile-time entities.

5.5.3 | Constexpr and consteval

The constexpr keyword was introduced in C++11 to allow the evaluation of functions
at compile time. A constexpr function can be evaluated at compile time if all its
arguments are known at compile time and if its definition is available. If these conditions
are not met, the function can still be evaluated at runtime. For example:

constexpr int factorial(int n) {

return n <=1 ? 1 : (n * factorial(n-1));

auto f5 = factorial(5); // evaluated at compile time, f5 is a constant
expression

The consteval keyword was introduced in C4++20 to indicate that a function must
be evaluated at compile time. A consteval function cannot be evaluated at runtime. If
it is called with arguments that are not known at compile time, the program will fail
to compile.

The new version of the library makes extensive use of consteval functions to perform
obfuscation at compile time. This allows to generate obfuscated data and code that is
not present in the source code and that is not present in the binary in release builds.
In case, the obfuscation cannot be performed at compile time (for example because of
the use of a non-consteval function), the compiler will throw an error. This ensures
that the obfuscation is always performed at compile time and that the original data is
not present in the binary without relying on undefined behavior or on the optimization
capabilities of the compiler.

These two keywords were specifically added to the language for metaprogramming.

They implies both const and inline.

5.5.4 | Metaprogramming

It was not the original intent of the designers of C++ but C++ templates are in fact a
sub-language. This language is Turing-complete and similar to functional programming.
It is evaluated entirely at compile time, not at run time. For example, it is possible to
declare the following;:

template<int N>

53

struct Fibonacci { static constexpr int value = Fibonacci<N-1>::value +
Fibonacci<N-2>::value; };

template<>
struct Fibonacci<l> { static constexpr int value = 1; };
template<>
struct Fibonacci<0> { static constexpr int value = 0; }

It is an implementation of Fibonacci sequence using recursion (note: it can be imple-
mented differently, this code is designed this way to illustrate our discussion).

The code:

Fibonacci<20>::value

is entirely computed at compile time and will be replaced by its result (6756). There
is no computing and no cost at run time. We use recursion because C++ templates
define a functional language: there is no variables, no loops, etc. Every statement is
immutable like in Lisp or Haskell. Using this sub-language, we are able to generate
code and not only to compute numbers. Templates are able to operate on types and
make computation on them, or on other templates. We will use these possibilities to
implement obfuscation schemas like encryption of string literals.

The previous version of the library relied on template metaprogramming techniques.
The syntax of template metaprogramming is however quite complex and not very intu-
itive. It is also difficult to maintain and to debug. The new version of the library relies
on C++420 features like consteval and constexpr that allow to perform computations
at compile time without relying on template metaprogramming. This makes the code
much easier to understand, to maintain and to debug.

5.6 | History

Version | Date Description

0.1 December 1, 2011 | First version, strings literals obfuscation,
experimental

1.0 March 1, 2013 Major enhancements, based on work from Samuel

Neves, Filipe Araujo [15] and on work from
malware author “LeFF”
1.1 June 7, 2014 Enhancements for Hack In Paris 2014. Choose

obfuscation algorithm randomly, experiments with
finite state machines

54

Version | Date Description

1.2 September 26, 2014 | Enhancements for Black Hat Europe 2014. Choose
finite state machine (FSM) randomly from a set,

change FSM behavior depending on a runtime value
(debugger detection)

2.0 2025 Complete rewrite with C+420, better obfuscation
techniques, more user-friendly interface, compile-

time AES encryption

5.7 | Copyright and License of the Library

Copyright (¢) 2025-2026 Sebastien Andrivet All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted (subject to the limitations in the disclaimer below) provided that the
following conditions are met:

o Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

o Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and /or other materials
provided with the distribution.

e Neither the name of the copyright holder nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY’S PATENT RIGHTS
ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

55

Bibliography

1

oo 1 O

(¥ iU |

— o/ o/ —

[10]

[13]

[14]

[15]

S. Andrivet, “C++11 metaprogramming applied to software obfuscation - Black
Hat Europe 2014,” 2014.

B. Stroustrup, The C++ programming language: C++ 11, 4. ed., 4. print. Upper
Saddle River, NJ: Addison-Wesley, 2015.

N. Pantazopoulos, “Automating Pikabot's String Deobfuscation.” 2024.

K. Henson, “TrickBot gang uses template-based metaprogramming in Bazar
malware.” 2022.

A. Parata, “Deobfuscating C++ ADVobfuscator with Sojobo and the B2R2 binary
analysis framework.” 2020.

Mandiant, “FLOSS Version 2.0.” 2022.
ISO, “C++420 — ISO/TEC 14882:2020.” 2020.
Wikipedia, “Obfuscation (software) — Wikipedia, The Free Encyclopedia.” 2026.

B. Barak et al., “On the (im)possibility of obfuscating programs,” Journal of the
ACM, vol. 59, no. 2, pp. 1-48, Apr. 2012, doi: 10.1145/2160158.2160159.

J. Cappaert, “Code Obfuscation Techniques for Software Protection,” Doctoral
dissertation, 2012. [Online]. Available: https://cosicdatabase.esat.kuleuven.be/
backend /publications /files /these /199

M. Madou, B. Anckaert, B. Bus, K. De Bosschere, J. Cappaert, and B. Preneel,
“On the Effectiveness of Source Code Transformations for Binary Obfuscation.,”
2006, pp. 527-533.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles, tech-
niques, and tools, Pearson new international edition, second edition. in Pearson
custom library. Essex: Pearson, 2014.

W. H. Payne, J. R. Rabung, and T. P. Bogyo, “Coding the Lehmer pseudo-random
number generator,” Communications of the ACM, vol. 12, no. 2, pp. 85-86, Feb.
1969, doi: 10.1145/362848.362860.

S. K. Park and K. W. Miller, “Random number generators: good ones are hard
to find,” Communications of the ACM, vol. 31, no. 10, pp. 1192-1201, Oct. 1988,
doi: 10.1145/63039.63042.

S. Neves and F. Araujo, “Binary code obfuscation through C++4 template
metaprogramming,” 2012.

56

https://doi.org/10.1145/2160158.2160159
https://cosicdatabase.esat.kuleuven.be/backend/publications/files/these/199
https://cosicdatabase.esat.kuleuven.be/backend/publications/files/these/199
https://doi.org/10.1145/362848.362860
https://doi.org/10.1145/63039.63042

This document was generated with Typst using latexlike-report 1.0.0.

57

https://www.typset.io

	 1 Introduction
	 2 Obfuscation
	 2.1 Types of obfuscators

	 3 Design and Implementation
	 3.1 Generation of random numbers at compile time
	 3.2 Obfuscation
	 3.3 Obfuscation of Strings
	 3.4 Obfuscation of data
	 3.5 Obfuscation of function calls
	 3.5.1 Finite State Machine (FSM)

	 3.6 Encryption of data with AES (Experimental)
	 3.6.1 AES (Advanced Encryption Standard)
	 3.6.2 AES in CTR mode
	 3.6.3 Encryption of strings with AES
	 3.6.4 Limitations

	 3.7 Reverse engineering

	 4 Conclusion
	 5 Appendix
	 5.1 Installation
	 5.1.1 Manual download
	 5.1.2 Install & Use via find_package
	 5.1.3 Add as a Git Submodule / Subdirectory
	 5.1.4 Use with FetchContent

	 5.2 Source Code
	 5.3 Usage
	 5.3.1 Obfuscation of strings
	 5.3.2 Obfuscation of data
	 5.3.3 Encryption of strings with AES

	 5.4 Compilers support
	 5.5 A brief introduction to metaprogramming
	 5.5.1 Templates
	 5.5.2 Variadic templates
	 5.5.3 Constexpr and consteval
	 5.5.4 Metaprogramming

	 5.6 History
	 5.7 Copyright and License of the Library

	Bibliography

